Kernel Level Speculative DSM

Cristian Tapug Justin D. Smith, and Jason Hickey
Caltech Computer Science 256-80, Pasadena, CA 91125
{crt, justins, jyj @cs.caltech.edu

Abstract tion scheme used to maintain consistency across the dis-
tributed system.
Interprocess communication (IPC) is ubiquitous in to- System V IPC is one of the most widely-used applica-

day’s computing world. One of the simplest mechanisms fortion programmer interfaces (API) for interprocess commu-
IPC is shared memory. We present a system that enhanceasication. The API provides a simple way to create and
the System V IPC API to support distributed shared memoryuse IPC structures like message queues, semaphores, and
(DSM) by using speculations. Speculations provide perfor- shared memory. More recently, a standard POSIX IPC API
mance improvements by enabling rollback of overly opti- has been developed that provides many of the same features
mistic speculative executions. This paper describes a specas System V IPC, albeit with a simplified interface.

ulative total order communication protocol, a speculative Qver the last decade, there has been extensive work in
sequential consistency model, and a speculative distributedthe area of distributed systems and shared memory. The
locking mechanism. All these are supported by a mathemat-concept of distributed shared memory was introduced by
ical model showing the advantages of speculative executionKai Li in 1986. Since then, many systems have emerged.
over traditional execution. However, due to lack of standardization, most of these sys-

Our DSM system is part of the Mojave system, which tems provide their own API, different enough from each

consists of a compiler and the extensions of the operatingother to require rewrites of the applications when porting

system designed to support speculations and process mithem from one system to another.

gration. The goal of our system is to provide a simpler pro- Qur distributed shared memory system is designed as

gramming paradigm for designers of distributed systems. part of Mojave [3], a system consisting of a compiler to-
gether with operating system extensions designed to sim-

plify distributed systems programming through the use of

1. Introduction high-level language primitives, such as process migration.
Mojave also provides speculations (or speculative execu-

.) _ tion) to help ensure reliability, introduce fault-tolerance and
In today’s computing world, interprocess communica- jynrove performance. Speculations are used when a pro-
tion (IPC) has become an important programming tool. It cess hegins a computation based on a condition that may
is no longer conceivable to build significant programs that or may not be true. When a process enters a speculation,
do not'interact with each other, or do not make use qf IN- 3 copy of its memory and 1/O state is created and stored
formation stored on a remote computer. Several techniqueggr fyture reference. If the process later discovers that the

may be used for IPC: message passing, semaphores, shareflgition is false, it rolls back to the point where the spec-

memory and remote procedure calls. Among these, shareqjation was entered by restoring the saved state, undoing
memory provides a method of sharing state and variablesy|| computations that relied on the errant assumption. Once

between multiple processes that meshes well with mosty,e rocess verifies that the condition is true, it commits the
commonly-used programming languages. Designed ini- speculation and discards the saved state.

i i i later . : iminati
tially for uniprocessor machines, shared memory was Speculations improve performance by eliminating

extended to multiprocessor systems and eventually to d's.'gocking for operations that may not immediately complete.

_tnblutted ?\/stems. Sharedf meTr(])ry |sdapr1|p?anallng nt:fncar:ése 'One such example is sending messages over the network
ISolates the programmer from the underlying communica- pore the system must normally wait for an acknowledg-

“This work was supported by the DARPA, grant F33615-98-C3613 and MENt that the message was delivered. The Mojave imple-
ASCI/ASAP, grant W-7405-ENG-48 mentation of speculations makes them cheap to enter and

tPresenting author. commit. When the condition of the speculation is likely to

occur, it is faster to assume its success than it is to block. | Context switch time (inus) \

Speculations are also beneficial for fault-tolerance, where Number of processes
there is no way to know if there will be a failure until the Process Size 2 5 10 20
process evaluates the computation. size=64k 7.77 46.01 99.90 123.0

This paper presents a distributed shared memory system | size=128k | 69.64 196.19 233.09 232.8
supporting the System V IPC API. In our system, the com- | size=200k | 277.29 281.24 289.84 287.3
piler and kernel cooperate to provide a simple DSM pro-
gramming model. In Section 2 we discuss the motivation Network latencies for remote host (irs);
for our system and continue in Section 3 by presenting the | includes context switch time for two processes
details of the system’s design. The current status of ourim- =555 latency using mojave3 (350 bytes): 187.1849
plementation is discussed in Section 4. We provide a com- | ;5p latency using mojave3 (600 bytes): 272.3542
parison of our work with other DSM systems in Section 5 TCP latency using mojave3 (400 bytes): 167.2341

and we cqncludg by presenting the future directions of our TCP latency using mojave3 (4000 bytes): 342.1603
research in Section 6.

» O

2. Motivation Figure 1. Benchmarks for Mojave Cluster

More than a decade before the first distributed ShaTEdare deve|0ped as user level app"cations that manage mem-
memory system was implemented, programmers were Usory and provide programmers with a library of functions to
ing the concept of shared memory. System V IPC APl was pe linked with their programs. Our belief was that having
among the first widely accepted libraries that provided usersthe page management mechanism inside the kernel would
with primitives for shared memory. As the System V APl reduce the overhead of the system.
spread across platforms, many programmers developed ap- To ensure consistency of data stored in the shared mem-
plications on top of it that made use of the shared memory ory space, our DSM system uses total-order communication
model. We decided to extend the System V shared memoryamong the participants. Total-order protocols are expensive
API to make it suitable for distributed applications. While qgye to the amount of communication required among the
most of the existing DSM systems provide their own APl machines to achieve consensus on the message order. The
to distributed shared memory, we believe that using a well |atency of messages in the system is also higher because a
known API would make the use of distributed shared mem- message cannot be delivered until all other machines have
ory more appealing to programmers. acknowledged receipt, limiting the efficiency to that of the

DSM systems provide not only different APIs but also sjowest participant. We managed to overcome this problem

different consistency models. Each consistency model givespy using speculations. A model to support our claim is pre-
its own guarantees about when nodes in the system see thgented in section 3.2.2.

changes made by other nodes to the shared memory blocks.
Therfefore, programmers must adapt theirdesign_ to meet th%_l_ Kernel level module
requirements of the consistency model. We believe the se-
quential consistency model (implemented, for instance, in
IVY [9]) makes programming with distributed shared mem- _ i
ory easier to understand and more portable. One knownPOundary our implementation should be, we used a set of
problem of providing sequential consistency communica- benchmarks to measure the con_text switch time between
tion latency. Speculations can be used to combat this probWO Processes and the time required to send a large block
lem, as we show in the following section. of data across the network in a Local Area Network (LAN).
The results we obtained from running the LMBench [12]
. benchmark on our cluster are presented in Figure 1. The
3. Design cluster consists of 16 machines, each with 700MHz dual
processors, running Red Hat 8.0 and the 2.4.18 Linux ker-
This section will present some of the high level and low nel, and connected through a 100Mbit network. The results
level design decisions that we faced along with a mathe-indicate that when we have more than 5 actively running
matical model to support the use of speculations as a way tgorocesses with size at least 128Kk, the context switch time is
improve the communication protocol. at least as long as sending 400 bytes from one machine to
One of the main design issues was to determine whethetthe other.
the system should be implemented as a kernel module or a An interesting observation that we made based on some
user level application. Most of the existing DSM systems previously collected benchmarks [13] was that the relative

In order to determine on which side of the kernel-user

times spent in context switching and in network latency

have changed over the last seven years toward supporting-:
our assumption that context-switching time and network la- 2:
tency are of the same order of magnitude. Our conclusion3:
was that moving the page allocation mechanism inside the4:
kernel could compensate for a consistency algorithm thatS:
uses more communication to provide a stricter consistency6:

read messagk! from network; ty < time
while time < to +T A3 m’ . last(m') < M do
process messages from network
end while
if 3m/ . last(m') < M then
enter speculation; deliveM

model. 7 abort if receive messagkl’ s.t. M/ < M
8: commit whenV m’ . last(m') > M

3.2. Speculations and shared memory 9 else
10: deliverM
11: endif

The Mojave system provides speculation primitives that
are cheap compared with the time required for the slow-
est participant to acknowledge delivery in traditional total-
order communication systems. Speculations consist of three
operationsentry, which is performed when a process wants
to assume a conditioft’ that may or may not turn out to be
true; commit once the process has verified tliats true;
andabort, which returns the process to a state prior to en-
try if it discovers that the conditiod’ is false. Multiple
speculations may be active at a time; aborting a specula-
tion started at time implicitly aborts all speculations that livered to the destination when the protocol makes it avail-
were entered after time However, committing a specu- able to the application which expects it. To optimize perfor-
lation started at time does not automatically commit later mance, our algorithm uses speculations and a sliding win-
speculations. dow mechanism, similar to the TCP window. The recipient

Our design uses speculation to provide total-order com-0f @ message uses speculation in the following way: if the
munication with decreased network utilization and messagemessage has not been delivered within tiyehe recipient
latency. The system uses a weaker causal-order commuenters a new speculation that assumgsnay be delivered
nication protocol which only requires messages that areat this time. Once the recipient enters the speculation, it de-
causally related to be well-ordered. Speculations may alsolivers the message. The speculation can be committed once
be performed on the DSM operations themselves, to im-the recipient has seen messages from every other machine
prove fault-tolerance and reduce message latency. with IDs larger than(t,,m4). If the recipient, however, re-
ceives a message with ID smaller thiah then the recipient
must abort the speculation and return to the state whére
is waiting to be delivered. Figure 2 gives pseudocode for

Communication among the participants of DSM is causally- this algorithm.
ordered using logical timestamps. Each machine is also The window siz€T" should be larger than the round-trip
numbered with a unique node ID. A message is identified time between the machines. This window size may be main-
by an ID (¢,m) that contains both the logical timestarhp tained dynamically throughout the algorithm using methods
and the machine I of the sender. Messages are delivered similar to those used to maintain the TCP window size. The
in the order of their logical timestamps; among messagesmathematical model presented in Section 3.2.2 gives formal
which have the same logical time, the message originatingbounds on the value df which should be sufficiently large
from the machine with smaller ID is delivered first. We in- So that the probability of mis-speculation be low, but not too
troduce a total order relation on messages as follows: we large as we might never get to speculate.
say messagé/, with ID (¢1,m;) was issued earlier (or it Under this scheme, we no longer require acknowledg-
has a smaller ID) thaM, with ID (t2, ma): My < My if ments from every machine to agree on the delivery order
1 <ta0rty =ty Amy < mo. of messages. In order to keep the speculations’ lifetime
In a total order protocol, when a messate with 1D short, if a machine has not sent a message within an inter-
(t1,mq) is received, the message is held in a queue untilval 77 > T, it should send a “quiet” messagé to other
all messageg/’ with smaller ID have been delivered to the machines indicating that it has no messages to send. When
application. We will further use the terms received and de- other machines receiv&/g, they may use the timestamp
livered as follows: a message is received when the messagassociated with\/g to commit speculations for messages
is passed from the network driver to our protocol, and is de- with a smaller timestamp.

time IS current system time
last(m) is last message seen from machine

Figure 2. Algorithm for total-order communi-
cation using speculations

3.2.1 Speculations for total-order messages

3.2.2 Mathematical model for speculations probability ¢ the latency is the time we wait until we start
speculating plus the time consumed for enteriffig) @nd
committing () the speculation. In this case, we know the
speculation succeeds without any doubt, so there is no abort
time(T},) involved.

We present a mathematical model for our speculations
which will help us better understand the gains and losses
of our speculative system. Before we describe our model
we Woyld like to introduce the notation used in this sec- For the delayed delivery case, with probability-r) the
t'on_' First, B[X] repr_esents t]tliehexpected value of random o delivery time is less than With probabilityr we will
variableX. The notationt[X, 7" represents the expected giart speculating before delivering the message. However,

value of random variablel Zgr the rangelow-highof its the time spent speculating until the moment we receive the
domain. ThusF[X] = E[X]g* for a variableX definedon |55t message with an ID lower than M's is also part of the
[0, 00) latency. When the last message with an ID lower than M is

We want to determine the latendy between the time received we would incur the abort time of the current spec-
message M is initially received and the time that M is suc- yation plus the time to entef}) a new speculation, which
cessfully delivered to the application and compare it to the js gyaranteed to succeed, so we also add to it the commit
latency L. from the non-speculative (classical) model. We ime (77,).
will start by showing what the expected latency for the clas- The exact mathematical formula is given below:
sical model is and then we will describe the specifics of our
model and derive the formula for its latency. E[L] =p((1 — q)E[U)E + ¢(T + T. + T.))+ 2

For' each message M that is re.celved we dlstlngqlsh twq 1—p) (1 =) E[VIT + r(E[W]F + Ty + T, + T.))
cases: the message could be delivered right away (immedi-
ate delivery case), or the message needs to wait until some To find the condition for which the latency of our sys-
earlier messages are delivered (delayed delivery case). Taem is less than that of the classical model we require that
represent this distinction we use a parametifiat givesthe E[L] < E[L.]. This is satisfied if the following inequality
probability that message M could be delivered right away. holds:

We also consider two random variabldg,and V' which

represent, for each case, the time from the reception of the peEUIF + (A =p)r(E[V]F - EWI|F) = ()
message until the moment we can safely deliver it. Even pg(T+Te +Te)+ (1 —p)r(Ty + Te + Tt)

for the immediate delivery case we might have to wait for]) »)

a certain period of time until we have the guarantee thatit Ve used the following formula in rewriting the classical
is safe to deliver it. This is the time modeled by random Model expected latency:

variableU. Y oo
The expected latency for the classical model would be BIX]=p(X <V)BX]-o + (1 = p(X <V) EIXJ
given by the following formula: Inequality 3 gives us the requirements our system must
satisfy to perform better than the classical model. We distin-
E[L.] =pE[U]+ (1 -p)E[V] 1) guish again, between the two cases. First, for the immedi-

) ate delivery case, we improve only if the expected delivery
To cpmplete our model we also havg to take into con- time s greater than the size of the waiting wind@plus
sideration the window siz&' and the arrival of messages {ne time spent to enter and commit the speculation. Second,
with smaller IDs than the one we are trying to deliver. Let for the delayed delivery case, we improve only if the time
q be the probability that random variablleis greater than gifference between the safe delivery time and the time the
the window sizeT’, andr be the probability that random |55t message with lower ID is received is greater than the

variableV" is greater tha". The waiting window siz&" time spent to abort a speculation plus the time to enter and
denotes the time we wait before we start speculating. HOW-commit the final speculation.

ever, if during timel” we can delivef we do it right away.
Let W be a random variable representing the time from the
reception of messag® until the reception of the last of all
messages with IDs smaller than that of M. We know that In addition to using speculations to improve the underly-
W < V for the entire domain. ing communication for DSM, we can use speculations on
We can proceed to compute the expected latency for ourthe DSM read and write operations to reduce latency and
model as follows. Consider the same two cases as for thentroduce fault tolerance. This section describes a few tech-
classical model, described by probability For the imme- niques for applying speculations to DSM operations to fur-
diate delivery case, with probabilityi — ¢) the latency is ther improve performance.
the expected time until we can safely delivgr(since with The total-order communication described in the previous
probability (1 — ¢) the delivery time is less thdh) and with section can be adapted to provide a sequential order of the

3.2.3 Speculations on DSM operations

read and write operations, as follows. A process issuing a 4. Implementation
read operation for pagewould normally have to wait until
all writes issued before the read have been processed. In 5.4 of the goals of the implementation was to make it

a DSM system, where writes are relatively infrequent, the g, hat it would involve minimal changes in the kernel.

process can assume that all pending writepfbave been \ye made use of the module system provided by the Linux

processed as soon as the read request is issued. This Spegs el and we implemented the system as a kernel module
ulation is aborted if a write message foiis subsequently for the Linux kernel version 2.4.18. The modifications to

delivered for the page with an earlier logical timestamp than the kernel amount to less than 100 lines. The rest of the
the read operation; once the system has verified there are nQ 4q is part of a kernel module

pending writes fop with earlier logical time, the specula-

tion qatrl be Co:t]?'ttedaTh'i.lljs? of spgculau?‘ns ensures thecal machine. Theerverspool serves incoming requests for
consistency ot the reads while improving performance. pages or locks coming from remote machines. Thents

If we additionally want to support fault-tolerance in the pool serves local requests to remote machines. When an
event of a machine failure, we also need to add SpeCUlationSappﬁcation accesses a shared page, the page can be either
on write calls. If a participant does not receive the mes- |ocal or at a remote location. In the first case, we serve the
sage due to failure, the write Speculation is aborted and thEaccess promptly and there is no delay incurred. The system
sender may attempt the write again once it has identified thEbehaves as it norma”y would for a non-shared memory ac-
new set of participants. cess. If the page request can not be satisfied locally, we find
out the location of the distributed shared memory block and
we transfer the page from its remote location. The transfer
of data is done at the kernel level directly between clients
and servers.

Speculations can also be used to improve distributed lock- 1he data structures that we maintain at kernel level are
ing mechanisms needed to support synchronization in DSMSIMilar to those maintained by the System V implementa-
systems. Shared memory works best when programmeré'c?”- Wg a;souate each dIStI’I.but?d shareq memory block
have the ability to use complementary synchronization With a distributed key. The main difference is that we pro-
techniques to avoid race conditions on shared locations.Vide & global namespace for the distributed keys, using a
Semaphores can be easily implemented using an optimistid®chnique similar to the one used by the domain name sys-
lock acquisition based on speculations. Processes enter M- We have hierarchical DSM nameservers, which ensure
new speculation when the request for the lock is issued;the scalability of the system and reply to key inquiries in a
the speculation is committed when the lock is granted and{imely manner.
aborted otherwise. Speculations are provided by the Mojave system and are
used implicitly by DSM to improve performance of read
and write operations. Because speculations are a high-level
3.3. Sequential Consistency model primitive that is also available to programmers using the
Mojave system, DSM must accommodate programs that en-
ter speculations while writing to the shared memory space.
The speculative total-order communication and the useTo accommodate thesaplicit speculations, our DSM uses
of speculations for shared memory accesses and locks allowechniques that mirror the Mojave system implementation.
us to provide the user with a sequential consistency model. The Mojave system uses multiple heaps (one per specu-
The speculations reduce the communication and locking |a'|ation) to store memory local to a specific process; it also
tency and make the memory model more competitive. uses a pointer table so that individual pages may be relo-
The performance problem of sequential consistency wascated efficiently — all pointers in memory are indices into
proved by Lipton and Sandberg [10]. They showed that if this pointer table, which contains a pointer to the actual
the read time is-, the write time isw, and the minimal block of memory in the heap. When a process enters a
packet transfer time between nodeg,ishenr + w > t¢. speculation, the current heap is marked read-only. An at-
This indicates that by reducing the time spent for one of tempt to write to a read-only page will generate a copy-on-
the operations, the time spent for the other operation mustwrite fault; the page is copied to a new writable heap, and
increase. To improve performance our DSM attempts to the pointer table is updated to point to the new block. The
reduce the value aof by executing optimistically, allowing Mojave system keeps track of the previous block, and in
reduced times for both the read and write operations. If thethe event that the speculation is aborted, restores the pointer
optimistic assumption fails, performance is not worse than table entry to point to the previous block. When the specu-
it would have been without using the speculation. lation is committed, the system simply discards the original

The module starts two pools of kernel threads on the lo-

3.2.4 Speculations for distributed locking

Matrix Version of matrix multiplication Migration type
Size Par ShMem MsgPass DSM Process Size Source Binary
100 0.006 0.01 0.183 0.08 size= 100k | 2.58 0.72
200 0.046 0.06 0.583 0.34 size=200k | 2.74 0.78
1000 | 12.616 11.35 14.106 12.983 size=1000k | 4.30 0.86
Figure 3. Effective computation (in sec) Figure 4. Migration time (in sec)

block. With this model, entry and commit are efficient, and As it can be seen from Figure 3, our version of DSM al-
only the blocks that are modified must be copied. ways performs better than the message passing version and
Our DSM must provide support in order to undo shared it is not much worse than the parallel version or the local
memory writes from a process which rolls back an explicit shared memory version. The main observation that we have
speculation. This is done by ensuring that the messageto make is that none of the two versions that perform better
gueue is aware of the speculation, so that any writes done byon a per thread basis can outperform the total running time
the process while it is in a speculation are marked as spec-of the DSM matrix multiplication program because they are
ulative writes. These writes may later be undone using thebound to run on a single computer. Even when we split
same mechanism that DSM uses on implicit speculations. the matrix in four on our dual-processor machines, the run-
ning time of both parallel and shared memory version is at
4.1. Experimental Results least twice the running time of one thread. The DSM ver-
sion incurs a very low overhead when adding migration and

We conducted a series of experiments to evaluate theSPeculations, as we will see next.
design and performance of our system. The results pre-
sented were obtained by running different versions ofama-4.1.2 Migration
trix multiplication program: a multi-threaded parallel ma-
trix multiplication, a shared memory version using System Our compiler supports migration as a high-level language
V IPC, a distributed version using message passing, and thérimitive. For the purpose of our experiments we timed the
distributed shared memory version compiled with our sys- migration time for program with different heap sizes. The
tem. results are shown in Figure 4. There are two types of migra-
The implementation of the matrix multiplication pro- tions: binary migration, when the binary of the program is
grams is the naive one, where for each element in the resulinigrated to its new location, and source migration, when the
matrix we need one row and one column from the multi- intermediate representation (IR) of the program is migrated
plying matrices, respectively. We differentiate between the t0 the new location. The IR migration is more expensive be-
time spent for computation (including memory accesses andcause the program has to be recompiled at destination but it
communication) and the possible overhead inccured by thehas the advantage of being architecture-independent and it

use of speculations and process migration, and we analyzéllows the destination machine to verify that the program is
them separately. type safe and that heap values are used in a proper manner.

For the specific case of the matrix multiplication pro-
gram, the binary that we migrate has about 200k, so the
overhead due to migration is merely 0.7 seconds. Even by
For each version of the matrix multiplication program we adding this to the total time of the DSM version of matrix
have a main thread that creates the matrices to be multi-multiplication, the performance is still better than for the
plied and different threads that do the actual computation of other versions.
the result matrix. We use square matrices for our tests and
we split the result matrix in four equal sul_amatrices, hf_;win_g 4.13 Speculations
one thread computing each quarter. The times shown in Fig-
ure 3 measure the best time obtained from running the fourSpeculations are currently not fully suported at the com-
threads computing the result matrix. For the parallel ver- munication protocol level. The results we provide in Fig-
sion of the matrix multiplication program the results shown ure 5 measure the entry, abort and commit times, for a
include the time to start the cloned thread from the main user level process that uses speculations. The mutation per-
thread, but it does not include the actual time of starting the centile refers to the percentile of the data that changed since
entire process. All the other times include the time spent in we entered the speculation. The abort and commit times are
starting the processes. slightly higher than the entry time.

4.1.1 Effective computation

Operation (and mutation percentile of distributed resources (memory and file system) and pro-

Proc.| Entry Abort Commit cess migration. Although the system seems very similar to
Size 10% 100%| 10% 100% ours, we have a diffferent programming model, based on
100k | 27 65 84 57 54 System V IPC API, and we provide process migration as a
200k | 40 120 135 | 81 87 programming language feature, supported by our compiler.
1000k| 63 | 131 466 | 111 109 We also propose a way of improving the performance of the

protocol used to maintain sequential consistency by using
speculations.

Another area of related work is that of speculative ex-
ecution systems. There are two main threads of research
5. Related work in this area. One is using general message predictors and
pattern-based predictors to learn and predict the memory ac-
. ' o tivity in DSM systems for performance improvement, while
melx\gr;[lgiy;:tgr%e I?fvcgg c‘;'g;lso%ﬁevéags E;i::gﬂi%iﬂige thg other is using specu_lative threads to improve compu-

' tation. The latter direction proposes the use of new ar-

late 80s. VY prowd_es a common virtual address space chitectural designs to allow hardware and software collab-
shared by the machines in the system and supports se-

) : . X X oration to support a “monitor and recover” programming
quential consistency and a multiple readers-single writer Se'paradigm [15]
mantics. Sequential consistency provided a programming-— Cosmos [14] is a general pattern predictor. It accurately

frl_end_ly model and made the designing of distributed ap- predicts the future coherence operations and performs them
plications easy. However, the system was rather slow due. |ati : ; B
to its page updating mechanism. Our work uses the samegn a spﬁcu ative mannde_r to |mpr0\:je_ pertc))rmadn([:)eS.M y_uz—
) . i ing such a pattern predictor, a predictor-base might
consistency model as IVY in the context of the System V g P P P g

. . . eliminate the overhead of maintaining coherence. However,

IF;;QE: E:;: dpéﬂvédzij;?(‘;’:g and more robust updating the assumption is that certain branches of programs are it-

P . P L erative and therefore they perform repetitive actions leading
The Munin [2, 1] system improved performance through

" . : . to the accurate prediction of the access pattern. Cosmos is
the use of explicit locking and barriers. The resulting weak P b

ist del d ication. but shifts th able to predict the coherence protocol messages in isolation
consistency model decreases communication, but ShltS the, 4 pag ot been integrated with a real coherence proto-
task of consistency onto the programmer. In the same

L . . col. Memory Sharing Predictor (MSPs) [8] is a specialized
?p'm’ Triadrgegkts [7]. Trj[he; |trrr11proved Ith?t comThunlca- pattern-based predictor that only predicts memory request
lon over, €ad but maintained the complexity on the pro- messages. MSP eliminates the acknowledgment messages
grammer’s side. Although the Lazy Release Consistency

del (LRC) 161 h dvant h -~ “7from the pattern tables and reduces this way the overhead
mode () [6] has Some advantages over In€ Previous, 4, creases prediction accuracy. The MSP sends read-
consistency models, it still relies on a session semantics

. . . . only block copies to predicted requesters and verifies the
through explicit use of locking and barriers. We implement y P P q

a stricter consistency model which provides UNIX seman speculation accuracy based on the write-invalidation mes-
1 stricte ency mo provide sages received from the hosts that did not issue a read before
tics and we provide programmers with a simpler program-

ming paradigm. We also manage to reduce the overhead o%he write.

the gopmmunsgicétion protocol by%sing speculations The ma?n difference betvv_een the aboye systems z_and our
One of the more recent DSM systems is DIPC [A;] DIPC approgch 'S that Wwe are using speculations to provu.je.se—

. . . .) quential consistency. In addition, we do not use prediction

IS pa_rtly _|mplemente_d n the_ operating system kernel, but to determine possible future actions of the system. We use

it maintains most of its functionality outside the kernel. It

. . speculations to implement an optimistic protocol that as-
gpha}nces the System V.IPC API to mclu_de .th(_a notion of sumes we have seen all the messages sent in the system at
|s§r|buted IPC [5]. In trj|s respect DIPC is S|.m|.Iar to OUr iha time we enter the speculation,

project. However, DIPC's user level daemon is in the crit-
ical decision-making path, reducing performance. Another .
drawback of DIPC is that it has a static “cluster’ member- 6. Conclusions
ship that prevents scalability. DIPC also provides a strict
memory consistency through an ownership protocol, de- We propose a model for improving performance of a dis-
creasing performance. tributed shared memory system by using speculations. We

Gobelins [11] is a Single System Image operating sys- present a speculative total ordering algorithm and a specula-
tem designed for clusters of PCs which extends the SMPtive locking mechanism supporting our proposal for a spec-
shared memory programming model to clusters. Gobelinsulative sequential consistency model. The speculative se-
introduces special processes and threads which make usguential consistency model we illustrated in Section 3 uses

Figure 5. Speculation overhead (in usec)

the speculation mechanism provided by the extensions of[15] J. Oplinger and M. Lam. Enhancing software reliability us-

the Mojave system into the operating system.

As future research, we plan to investigate the use of
speculations to develop more efficient communication pro-
tocols. We are also interested in applying speculations to
distributed file system design in order to provide transpar-
ent process migration.

References

[1] J. Bennett, J. Carter, and W. Zwaenepoel. Implementation
and performance of munin. Proceedings of the 13th Sym-
posium on Operating System Priniciplgzages 152-164.
ACM Press, October 1991.

[2] J. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Dis-
tributed shared memory using multi-protocol release consis-
tency. InDagstuhl Seminar on Operating Systems of the 90s
and Beyondvolume 563 ofLecture Notes in Computer Sci-
ence pages 56-60. Springer Verlag, 1991.

[3] J. Hickey, J. D. Smith, B. Aydemir, N. Gray, A. Granicz,
and C. Tapus. Process migration and transactions using a
novel intermediate language. Technical Report caltechC-
STR 2002.007, California Institute of Technology, Com-
puter Science, July 2002.

[4] K. Karimi and T. Bynum. dipc sources.
http://wallybox.cei.net/dipc/.

[5] K. Karimiand M. Sharifi. Dipc: The linux way of distributed
programming. InThe 4th International Linux Conference,
Wurzburg, Germany1997.

[6] P. Keleher. Lazy release consistency for distributed shared
memory. January 1995. Ph.D. Thesis, Rice University.

[7] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel.
Treadmarks: Distributed shared memory on standard work-
stations and operating systemsPlimceedings of the Winter
94 Usenix Confereng@ages 115-131, January 1994.

[8] A.-C. Laiand B. Falsafi. Memory sharing predictor: the key
to a speculative coherent dsm. Pnoceedings of the 26th
annual international symposium on Computer architecture
pages 172-183. IEEE Computer Society Press, 1999.

[9] K. Li and P. Hudak. Memory coherence in shared virtual
memory systemsACM Transactions on Computer Systems
7(4):321-359, november 1989.

[10] R. Lipton and J. Sandberg. Pram: A scalable shared mem-
ory. Technical Report CS-TR-180-88, Princeton University,
September 1988.

[11] R. Lottiaux and C. Morin. Containers : A sound basis for
a true single system image. Rroceeding of the IEEE In-
ternational Symposium on Cluster Computing and the Grid
May 2001.

[12] L. Mcwoy and C. Staelin. Imbench sources.
http://www.bitmover.com/Imbench/.

[13] L. McVoy and C. Staelin. Imbench: Portable tools for per-
formance analysidJsenix 1996.

[14] S.S. Mukherjee and M. D. Hill. Using prediction to acceler-
ate coherence protocols. Rroceedings of the 25th annual
international symposium on Computer architectupages
179-190. IEEE Press, 1998.

ing speculative threads. IRroceedings of the Conference
on Architectural Support for Programming Languages and
Operating System®ctober 2002.

