
Kernel Level Speculative DSM∗

Cristian Ţ̆apuş†, Justin D. Smith, and Jason Hickey
Caltech Computer Science 256-80, Pasadena, CA 91125

{crt, justins, jyh}@cs.caltech.edu

Abstract

Interprocess communication (IPC) is ubiquitous in to-
day’s computing world. One of the simplest mechanisms for
IPC is shared memory. We present a system that enhances
the System V IPC API to support distributed shared memory
(DSM) by using speculations. Speculations provide perfor-
mance improvements by enabling rollback of overly opti-
mistic speculative executions. This paper describes a spec-
ulative total order communication protocol, a speculative
sequential consistency model, and a speculative distributed
locking mechanism. All these are supported by a mathemat-
ical model showing the advantages of speculative execution
over traditional execution.

Our DSM system is part of the Mojave system, which
consists of a compiler and the extensions of the operating
system designed to support speculations and process mi-
gration. The goal of our system is to provide a simpler pro-
gramming paradigm for designers of distributed systems.

1. Introduction

In today’s computing world, interprocess communica-
tion (IPC) has become an important programming tool. It
is no longer conceivable to build significant programs that
do not interact with each other, or do not make use of in-
formation stored on a remote computer. Several techniques
may be used for IPC: message passing, semaphores, shared
memory and remote procedure calls. Among these, shared
memory provides a method of sharing state and variables
between multiple processes that meshes well with most
commonly-used programming languages. Designed ini-
tially for uniprocessor machines, shared memory was later
extended to multiprocessor systems and eventually to dis-
tributed systems. Shared memory is appealing because it
isolates the programmer from the underlying communica-

∗This work was supported by the DARPA, grant F33615-98-C3613 and
ASCI/ASAP, grant W-7405-ENG-48

†Presenting author.

tion scheme used to maintain consistency across the dis-
tributed system.

System V IPC is one of the most widely-used applica-
tion programmer interfaces (API) for interprocess commu-
nication. The API provides a simple way to create and
use IPC structures like message queues, semaphores, and
shared memory. More recently, a standard POSIX IPC API
has been developed that provides many of the same features
as System V IPC, albeit with a simplified interface.

Over the last decade, there has been extensive work in
the area of distributed systems and shared memory. The
concept of distributed shared memory was introduced by
Kai Li in 1986. Since then, many systems have emerged.
However, due to lack of standardization, most of these sys-
tems provide their own API, different enough from each
other to require rewrites of the applications when porting
them from one system to another.

Our distributed shared memory system is designed as
part of Mojave [3], a system consisting of a compiler to-
gether with operating system extensions designed to sim-
plify distributed systems programming through the use of
high-level language primitives, such as process migration.

Mojave also provides speculations (or speculative execu-
tion) to help ensure reliability, introduce fault-tolerance and
improve performance. Speculations are used when a pro-
cess begins a computation based on a condition that may
or may not be true. When a process enters a speculation,
a copy of its memory and I/O state is created and stored
for future reference. If the process later discovers that the
condition is false, it rolls back to the point where the spec-
ulation was entered by restoring the saved state, undoing
all computations that relied on the errant assumption. Once
the process verifies that the condition is true, it commits the
speculation and discards the saved state.

Speculations improve performance by eliminating
blocking for operations that may not immediately complete.
One such example is sending messages over the network
where the system must normally wait for an acknowledg-
ment that the message was delivered. The Mojave imple-
mentation of speculations makes them cheap to enter and
commit. When the condition of the speculation is likely to



occur, it is faster to assume its success than it is to block.
Speculations are also beneficial for fault-tolerance, where
there is no way to know if there will be a failure until the
process evaluates the computation.

This paper presents a distributed shared memory system
supporting the System V IPC API. In our system, the com-
piler and kernel cooperate to provide a simple DSM pro-
gramming model. In Section 2 we discuss the motivation
for our system and continue in Section 3 by presenting the
details of the system’s design. The current status of our im-
plementation is discussed in Section 4. We provide a com-
parison of our work with other DSM systems in Section 5
and we conclude by presenting the future directions of our
research in Section 6.

2. Motivation

More than a decade before the first distributed shared
memory system was implemented, programmers were us-
ing the concept of shared memory. System V IPC API was
among the first widely accepted libraries that provided users
with primitives for shared memory. As the System V API
spread across platforms, many programmers developed ap-
plications on top of it that made use of the shared memory
model. We decided to extend the System V shared memory
API to make it suitable for distributed applications. While
most of the existing DSM systems provide their own API
to distributed shared memory, we believe that using a well
known API would make the use of distributed shared mem-
ory more appealing to programmers.

DSM systems provide not only different APIs but also
different consistency models. Each consistency model gives
its own guarantees about when nodes in the system see the
changes made by other nodes to the shared memory blocks.
Therefore, programmers must adapt their design to meet the
requirements of the consistency model. We believe the se-
quential consistency model (implemented, for instance, in
IVY [9]) makes programming with distributed shared mem-
ory easier to understand and more portable. One known
problem of providing sequential consistency communica-
tion latency. Speculations can be used to combat this prob-
lem, as we show in the following section.

3. Design

This section will present some of the high level and low
level design decisions that we faced along with a mathe-
matical model to support the use of speculations as a way to
improve the communication protocol.

One of the main design issues was to determine whether
the system should be implemented as a kernel module or a
user level application. Most of the existing DSM systems

Context switch time (inµs)

Number of processes
Process Size 2 5 10 20
size=64k 7.77 46.01 99.90 123.00
size=128k 69.64 196.19 233.09 232.89
size=200k 277.29 281.24 289.84 287.34

Network latencies for remote host (inµs);
includes context switch time for two processes

UDP latency using mojave3 (350 bytes): 187.1849
UDP latency using mojave3 (600 bytes): 272.3542
TCP latency using mojave3 (400 bytes): 167.2341
TCP latency using mojave3 (4000 bytes): 342.1603

Figure 1. Benchmarks for Mojave Cluster

are developed as user level applications that manage mem-
ory and provide programmers with a library of functions to
be linked with their programs. Our belief was that having
the page management mechanism inside the kernel would
reduce the overhead of the system.

To ensure consistency of data stored in the shared mem-
ory space, our DSM system uses total-order communication
among the participants. Total-order protocols are expensive
due to the amount of communication required among the
machines to achieve consensus on the message order. The
latency of messages in the system is also higher because a
message cannot be delivered until all other machines have
acknowledged receipt, limiting the efficiency to that of the
slowest participant. We managed to overcome this problem
by using speculations. A model to support our claim is pre-
sented in section 3.2.2.

3.1. Kernel level module

In order to determine on which side of the kernel-user
boundary our implementation should be, we used a set of
benchmarks to measure the context switch time between
two processes and the time required to send a large block
of data across the network in a Local Area Network (LAN).

The results we obtained from running the LMBench [12]
benchmark on our cluster are presented in Figure 1. The
cluster consists of 16 machines, each with 700MHz dual
processors, running Red Hat 8.0 and the 2.4.18 Linux ker-
nel, and connected through a 100Mbit network. The results
indicate that when we have more than 5 actively running
processes with size at least 128k, the context switch time is
at least as long as sending 400 bytes from one machine to
the other.

An interesting observation that we made based on some
previously collected benchmarks [13] was that the relative



times spent in context switching and in network latency
have changed over the last seven years toward supporting
our assumption that context-switching time and network la-
tency are of the same order of magnitude. Our conclusion
was that moving the page allocation mechanism inside the
kernel could compensate for a consistency algorithm that
uses more communication to provide a stricter consistency
model.

3.2. Speculations and shared memory

The Mojave system provides speculation primitives that
are cheap compared with the time required for the slow-
est participant to acknowledge delivery in traditional total-
order communication systems. Speculations consist of three
operations:entry, which is performed when a process wants
to assume a conditionC that may or may not turn out to be
true; commit, once the process has verified thatC is true;
andabort, which returns the process to a state prior to en-
try if it discovers that the conditionC is false. Multiple
speculations may be active at a time; aborting a specula-
tion started at timet implicitly aborts all speculations that
were entered after timet. However, committing a specu-
lation started at timet does not automatically commit later
speculations.

Our design uses speculation to provide total-order com-
munication with decreased network utilization and message
latency. The system uses a weaker causal-order commu-
nication protocol which only requires messages that are
causally related to be well-ordered. Speculations may also
be performed on the DSM operations themselves, to im-
prove fault-tolerance and reduce message latency.

3.2.1 Speculations for total-order messages

Communication among the participants of DSM is causally-
ordered using logical timestamps. Each machine is also
numbered with a unique node ID. A message is identified
by an ID (t, m) that contains both the logical timestampt
and the machine IDm of the sender. Messages are delivered
in the order of their logical timestamps; among messages
which have the same logical time, the message originating
from the machine with smaller ID is delivered first. We in-
troduce a total order relation< on messages as follows: we
say messageM1 with ID (t1,m1) was issued earlier (or it
has a smaller ID) thanM2 with ID (t2,m2): M1 < M2 if
t1 < t2 or t1 = t2 ∧m1 < m2.

In a total order protocol, when a messageM with ID
(t1,m1) is received, the message is held in a queue until
all messagesM ′ with smaller ID have been delivered to the
application. We will further use the terms received and de-
livered as follows: a message is received when the message
is passed from the network driver to our protocol, and is de-

1: read messageM from network; t0 ← time
2: while time < t0 + T ∧ ∃m′ . last(m′) < M do
3: process messages from network
4: end while
5: if ∃m′ . last(m′) < M then
6: enter speculation; deliverM
7: abort if receive messageM ′ s.t.M ′ < M
8: commit when∀m′ . last(m′) > M
9: else
10: deliverM
11: end if

time is current system time
last(m′) is last message seen from machinem′

Figure 2. Algorithm for total-order communi-
cation using speculations

livered to the destination when the protocol makes it avail-
able to the application which expects it. To optimize perfor-
mance, our algorithm uses speculations and a sliding win-
dow mechanism, similar to the TCP window. The recipient
of a message uses speculation in the following way: if the
message has not been delivered within timeT , the recipient
enters a new speculation that assumesM may be delivered
at this time. Once the recipient enters the speculation, it de-
livers the message. The speculation can be committed once
the recipient has seen messages from every other machine
with IDs larger than(t1,m1). If the recipient, however, re-
ceives a message with ID smaller thanM , then the recipient
must abort the speculation and return to the state whereM
is waiting to be delivered. Figure 2 gives pseudocode for
this algorithm.

The window sizeT should be larger than the round-trip
time between the machines. This window size may be main-
tained dynamically throughout the algorithm using methods
similar to those used to maintain the TCP window size. The
mathematical model presented in Section 3.2.2 gives formal
bounds on the value ofT which should be sufficiently large
so that the probability of mis-speculation be low, but not too
large as we might never get to speculate.

Under this scheme, we no longer require acknowledg-
ments from every machine to agree on the delivery order
of messages. In order to keep the speculations’ lifetime
short, if a machine has not sent a message within an inter-
val T ′ > T , it should send a “quiet” messageMQ to other
machines indicating that it has no messages to send. When
other machines receiveMQ, they may use the timestamp
associated withMQ to commit speculations for messages
with a smaller timestamp.



3.2.2 Mathematical model for speculations

We present a mathematical model for our speculations
which will help us better understand the gains and losses
of our speculative system. Before we describe our model
we would like to introduce the notation used in this sec-
tion. First,E[X] represents the expected value of random
variableX. The notationE[X]highlow represents the expected
value of random variableX for the rangelow-high of its
domain. Thus,E[X] = E[X]∞0 for a variableX defined on
[0,∞)

We want to determine the latencyL between the time
message M is initially received and the time that M is suc-
cessfully delivered to the application and compare it to the
latencyLc from the non-speculative (classical) model. We
will start by showing what the expected latency for the clas-
sical model is and then we will describe the specifics of our
model and derive the formula for its latency.

For each message M that is received we distinguish two
cases: the message could be delivered right away (immedi-
ate delivery case), or the message needs to wait until some
earlier messages are delivered (delayed delivery case). To
represent this distinction we use a parameterp that gives the
probability that message M could be delivered right away.
We also consider two random variables,U and V which
represent, for each case, the time from the reception of the
message until the moment we can safely deliver it. Even
for the immediate delivery case we might have to wait for
a certain period of time until we have the guarantee that it
is safe to deliver it. This is the time modeled by random
variableU .

The expected latency for the classical model would be
given by the following formula:

E[Lc] = pE[U ] + (1− p)E[V ] (1)

To complete our model we also have to take into con-
sideration the window sizeT and the arrival of messages
with smaller IDs than the one we are trying to deliver. Let
q be the probability that random variableU is greater than
the window sizeT , andr be the probability that random
variableV is greater thanT . The waiting window sizeT
denotes the time we wait before we start speculating. How-
ever, if during timeT we can deliverM we do it right away.
Let W be a random variable representing the time from the
reception of messageM until the reception of the last of all
messages with IDs smaller than that of M. We know that
W < V for the entire domain.

We can proceed to compute the expected latency for our
model as follows. Consider the same two cases as for the
classical model, described by probabilityp. For the imme-
diate delivery case, with probability(1 − q) the latency is
the expected time until we can safely deliverM (since with
probability(1−q) the delivery time is less thanT ) and with

probability q the latency is the time we wait until we start
speculating plus the time consumed for entering (Te) and
committing (Tc) the speculation. In this case, we know the
speculation succeeds without any doubt, so there is no abort
time(Ta) involved.

For the delayed delivery case, with probability(1−r) the
safe delivery time is less thanT . With probabilityr we will
start speculating before delivering the message. However,
the time spent speculating until the moment we receive the
last message with an ID lower than M’s is also part of the
latency. When the last message with an ID lower than M is
received we would incur the abort time of the current spec-
ulation plus the time to enter (Te) a new speculation, which
is guaranteed to succeed, so we also add to it the commit
time (Tc).

The exact mathematical formula is given below:

E[L] = p((1− q)E[U ]T0 + q(T + Te + Tc))+ (2)

(1− p)((1− r)E[V ]T0 + r(E[W ]∞T + Ta + Te + Tc))

To find the condition for which the latency of our sys-
tem is less than that of the classical model we require that
E[L] ≤ E[Lc]. This is satisfied if the following inequality
holds:

pqE[U ]∞T + (1− p)r(E[V ]∞T − E[W ]∞T ) ≥ (3)

pq(T + Te + Tc) + (1− p)r(Ta + Te + Tc)

We used the following formula in rewriting the classical
model expected latency:

E[X] = p(X < Y )E[X]Y−∞ + (1− p(X < Y ))E[X]∞Y

Inequality 3 gives us the requirements our system must
satisfy to perform better than the classical model. We distin-
guish again, between the two cases. First, for the immedi-
ate delivery case, we improve only if the expected delivery
time is greater than the size of the waiting windowT plus
the time spent to enter and commit the speculation. Second,
for the delayed delivery case, we improve only if the time
difference between the safe delivery time and the time the
last message with lower ID is received is greater than the
time spent to abort a speculation plus the time to enter and
commit the final speculation.

3.2.3 Speculations on DSM operations

In addition to using speculations to improve the underly-
ing communication for DSM, we can use speculations on
the DSM read and write operations to reduce latency and
introduce fault tolerance. This section describes a few tech-
niques for applying speculations to DSM operations to fur-
ther improve performance.

The total-order communication described in the previous
section can be adapted to provide a sequential order of the



read and write operations, as follows. A process issuing a
read operation for pagep would normally have to wait until
all writes issued before the read have been processed. In
a DSM system, where writes are relatively infrequent, the
process can assume that all pending writes forp have been
processed as soon as the read request is issued. This spec-
ulation is aborted if a write message forp is subsequently
delivered for the page with an earlier logical timestamp than
the read operation; once the system has verified there are no
pending writes forp with earlier logical time, the specula-
tion can be committed. This use of speculations ensures the
consistency of the reads while improving performance.

If we additionally want to support fault-tolerance in the
event of a machine failure, we also need to add speculations
on write calls. If a participant does not receive the mes-
sage due to failure, the write speculation is aborted and the
sender may attempt the write again once it has identified the
new set of participants.

3.2.4 Speculations for distributed locking

Speculations can also be used to improve distributed lock-
ing mechanisms needed to support synchronization in DSM
systems. Shared memory works best when programmers
have the ability to use complementary synchronization
techniques to avoid race conditions on shared locations.
Semaphores can be easily implemented using an optimistic
lock acquisition based on speculations. Processes enter a
new speculation when the request for the lock is issued;
the speculation is committed when the lock is granted and
aborted otherwise.

3.3. Sequential Consistency model

The speculative total-order communication and the use
of speculations for shared memory accesses and locks allow
us to provide the user with a sequential consistency model.
The speculations reduce the communication and locking la-
tency and make the memory model more competitive.

The performance problem of sequential consistency was
proved by Lipton and Sandberg [10]. They showed that if
the read time isr, the write time isw, and the minimal
packet transfer time between nodes ist, thenr + w ≥ t.
This indicates that by reducing the time spent for one of
the operations, the time spent for the other operation must
increase. To improve performance our DSM attempts to
reduce the value oft by executing optimistically, allowing
reduced times for both the read and write operations. If the
optimistic assumption fails, performance is not worse than
it would have been without using the speculation.

4. Implementation

One of the goals of the implementation was to make it
such that it would involve minimal changes in the kernel.
We made use of the module system provided by the Linux
kernel and we implemented the system as a kernel module
for the Linux kernel version 2.4.18. The modifications to
the kernel amount to less than 100 lines. The rest of the
code is part of a kernel module.

The module starts two pools of kernel threads on the lo-
cal machine. Theserverspool serves incoming requests for
pages or locks coming from remote machines. Theclients
pool serves local requests to remote machines. When an
application accesses a shared page, the page can be either
local or at a remote location. In the first case, we serve the
access promptly and there is no delay incurred. The system
behaves as it normally would for a non-shared memory ac-
cess. If the page request can not be satisfied locally, we find
out the location of the distributed shared memory block and
we transfer the page from its remote location. The transfer
of data is done at the kernel level directly between clients
and servers.

The data structures that we maintain at kernel level are
similar to those maintained by the System V implementa-
tion. We associate each distributed shared memory block
with a distributed key. The main difference is that we pro-
vide a global namespace for the distributed keys, using a
technique similar to the one used by the domain name sys-
tem. We have hierarchical DSM nameservers, which ensure
the scalability of the system and reply to key inquiries in a
timely manner.

Speculations are provided by the Mojave system and are
used implicitly by DSM to improve performance of read
and write operations. Because speculations are a high-level
primitive that is also available to programmers using the
Mojave system, DSM must accommodate programs that en-
ter speculations while writing to the shared memory space.
To accommodate theseexplicit speculations, our DSM uses
techniques that mirror the Mojave system implementation.

The Mojave system uses multiple heaps (one per specu-
lation) to store memory local to a specific process; it also
uses a pointer table so that individual pages may be relo-
cated efficiently — all pointers in memory are indices into
this pointer table, which contains a pointer to the actual
block of memory in the heap. When a process enters a
speculation, the current heap is marked read-only. An at-
tempt to write to a read-only page will generate a copy-on-
write fault; the page is copied to a new writable heap, and
the pointer table is updated to point to the new block. The
Mojave system keeps track of the previous block, and in
the event that the speculation is aborted, restores the pointer
table entry to point to the previous block. When the specu-
lation is committed, the system simply discards the original



Matrix Version of matrix multiplication
Size Par ShMem MsgPass DSM
100 0.006 0.01 0.183 0.08
200 0.046 0.06 0.583 0.34
1000 12.616 11.35 14.106 12.983

Figure 3. Effective computation (in sec)

block. With this model, entry and commit are efficient, and
only the blocks that are modified must be copied.

Our DSM must provide support in order to undo shared
memory writes from a process which rolls back an explicit
speculation. This is done by ensuring that the message
queue is aware of the speculation, so that any writes done by
the process while it is in a speculation are marked as spec-
ulative writes. These writes may later be undone using the
same mechanism that DSM uses on implicit speculations.

4.1. Experimental Results

We conducted a series of experiments to evaluate the
design and performance of our system. The results pre-
sented were obtained by running different versions of a ma-
trix multiplication program: a multi-threaded parallel ma-
trix multiplication, a shared memory version using System
V IPC, a distributed version using message passing, and the
distributed shared memory version compiled with our sys-
tem.

The implementation of the matrix multiplication pro-
grams is the naive one, where for each element in the result
matrix we need one row and one column from the multi-
plying matrices, respectively. We differentiate between the
time spent for computation (including memory accesses and
communication) and the possible overhead inccured by the
use of speculations and process migration, and we analyze
them separately.

4.1.1 Effective computation

For each version of the matrix multiplication program we
have a main thread that creates the matrices to be multi-
plied and different threads that do the actual computation of
the result matrix. We use square matrices for our tests and
we split the result matrix in four equal submatrices, having
one thread computing each quarter. The times shown in Fig-
ure 3 measure the best time obtained from running the four
threads computing the result matrix. For the parallel ver-
sion of the matrix multiplication program the results shown
include the time to start the cloned thread from the main
thread, but it does not include the actual time of starting the
entire process. All the other times include the time spent in
starting the processes.

Migration type
Process Size Source Binary
size= 100k 2.58 0.72
size= 200k 2.74 0.78
size=1000k 4.30 0.86

Figure 4. Migration time (in sec)

As it can be seen from Figure 3, our version of DSM al-
ways performs better than the message passing version and
it is not much worse than the parallel version or the local
shared memory version. The main observation that we have
to make is that none of the two versions that perform better
on a per thread basis can outperform the total running time
of the DSM matrix multiplication program because they are
bound to run on a single computer. Even when we split
the matrix in four on our dual-processor machines, the run-
ning time of both parallel and shared memory version is at
least twice the running time of one thread. The DSM ver-
sion incurs a very low overhead when adding migration and
speculations, as we will see next.

4.1.2 Migration

Our compiler supports migration as a high-level language
primitive. For the purpose of our experiments we timed the
migration time for program with different heap sizes. The
results are shown in Figure 4. There are two types of migra-
tions: binary migration, when the binary of the program is
migrated to its new location, and source migration, when the
intermediate representation (IR) of the program is migrated
to the new location. The IR migration is more expensive be-
cause the program has to be recompiled at destination but it
has the advantage of being architecture-independent and it
allows the destination machine to verify that the program is
type safe and that heap values are used in a proper manner.

For the specific case of the matrix multiplication pro-
gram, the binary that we migrate has about 200k, so the
overhead due to migration is merely 0.7 seconds. Even by
adding this to the total time of the DSM version of matrix
multiplication, the performance is still better than for the
other versions.

4.1.3 Speculations

Speculations are currently not fully suported at the com-
munication protocol level. The results we provide in Fig-
ure 5 measure the entry, abort and commit times, for a
user level process that uses speculations. The mutation per-
centile refers to the percentile of the data that changed since
we entered the speculation. The abort and commit times are
slightly higher than the entry time.



Operation (and mutation percentile)
Proc. Entry Abort Commit
Size 10% 100% 10% 100%

100k 27 65 84 57 54
200k 40 120 135 81 87

1000k 63 131 466 111 109

Figure 5. Speculation overhead (in µsec)

5. Related work

IVY [9] is one of the first software distributed shared
memory system. It was developed by Li and Hudak in the
late 80s. IVY provides a common virtual address space
shared by the machines in the system and supports se-
quential consistency and a multiple readers-single writer se-
mantics. Sequential consistency provided a programming–
friendly model and made the designing of distributed ap-
plications easy. However, the system was rather slow due
to its page updating mechanism. Our work uses the same
consistency model as IVY in the context of the System V
IPC API but it provides a faster and more robust updating
protocol based on speculations.

The Munin [2, 1] system improved performance through
the use of explicit locking and barriers. The resulting weak
consistency model decreases communication, but shifts the
task of consistency onto the programmer. In the same
spirit, Treadmarks [7] further improved the communica-
tion overhead but maintained the complexity on the pro-
grammer’s side. Although the Lazy Release Consistency
model (LRC) [6] has some advantages over the previous
consistency models, it still relies on a session semantics
through explicit use of locking and barriers. We implement
a stricter consistency model which provides UNIX seman-
tics and we provide programmers with a simpler program-
ming paradigm. We also manage to reduce the overhead of
the communication protocol by using speculations.

One of the more recent DSM systems is DIPC [4]. DIPC
is partly implemented in the operating system kernel, but
it maintains most of its functionality outside the kernel. It
enhances the System V IPC API to include the notion of
distributed IPC [5]. In this respect DIPC is similar to our
project. However, DIPC’s user level daemon is in the crit-
ical decision-making path, reducing performance. Another
drawback of DIPC is that it has a static “cluster” member-
ship that prevents scalability. DIPC also provides a strict
memory consistency through an ownership protocol, de-
creasing performance.

Gobelins [11] is a Single System Image operating sys-
tem designed for clusters of PCs which extends the SMP
shared memory programming model to clusters. Gobelins
introduces special processes and threads which make use

of distributed resources (memory and file system) and pro-
cess migration. Although the system seems very similar to
ours, we have a diffferent programming model, based on
System V IPC API, and we provide process migration as a
programming language feature, supported by our compiler.
We also propose a way of improving the performance of the
protocol used to maintain sequential consistency by using
speculations.

Another area of related work is that of speculative ex-
ecution systems. There are two main threads of research
in this area. One is using general message predictors and
pattern-based predictors to learn and predict the memory ac-
tivity in DSM systems for performance improvement, while
the other is using speculative threads to improve compu-
tation. The latter direction proposes the use of new ar-
chitectural designs to allow hardware and software collab-
oration to support a “monitor and recover” programming
paradigm [15].

Cosmos [14] is a general pattern predictor. It accurately
predicts the future coherence operations and performs them
in a speculative manner to improve performance. By us-
ing such a pattern predictor, a predictor-based DSM might
eliminate the overhead of maintaining coherence. However,
the assumption is that certain branches of programs are it-
erative and therefore they perform repetitive actions leading
to the accurate prediction of the access pattern. Cosmos is
able to predict the coherence protocol messages in isolation
and has not been integrated with a real coherence proto-
col. Memory Sharing Predictor (MSPs) [8] is a specialized
pattern-based predictor that only predicts memory request
messages. MSP eliminates the acknowledgment messages
from the pattern tables and reduces this way the overhead
and increases prediction accuracy. The MSP sends read-
only block copies to predicted requesters and verifies the
speculation accuracy based on the write-invalidation mes-
sages received from the hosts that did not issue a read before
the write.

The main difference between the above systems and our
approach is that we are using speculations to provide se-
quential consistency. In addition, we do not use prediction
to determine possible future actions of the system. We use
speculations to implement an optimistic protocol that as-
sumes we have seen all the messages sent in the system at
the time we enter the speculation.

6. Conclusions

We propose a model for improving performance of a dis-
tributed shared memory system by using speculations. We
present a speculative total ordering algorithm and a specula-
tive locking mechanism supporting our proposal for a spec-
ulative sequential consistency model. The speculative se-
quential consistency model we illustrated in Section 3 uses



the speculation mechanism provided by the extensions of
the Mojave system into the operating system.

As future research, we plan to investigate the use of
speculations to develop more efficient communication pro-
tocols. We are also interested in applying speculations to
distributed file system design in order to provide transpar-
ent process migration.

References

[1] J. Bennett, J. Carter, and W. Zwaenepoel. Implementation
and performance of munin. InProceedings of the 13th Sym-
posium on Operating System Priniciples, pages 152–164.
ACM Press, October 1991.

[2] J. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Dis-
tributed shared memory using multi-protocol release consis-
tency. InDagstuhl Seminar on Operating Systems of the 90s
and Beyond, volume 563 ofLecture Notes in Computer Sci-
ence, pages 56–60. Springer Verlag, 1991.

[3] J. Hickey, J. D. Smith, B. Aydemir, N. Gray, A. Granicz,
and C. Ţ̆apuş. Process migration and transactions using a
novel intermediate language. Technical Report caltechC-
STR 2002.007, California Institute of Technology, Com-
puter Science, July 2002.

[4] K. Karimi and T. Bynum. dipc sources.
http://wallybox.cei.net/dipc/.

[5] K. Karimi and M. Sharifi. Dipc: The linux way of distributed
programming. InThe 4th International Linux Conference,
Würzburg, Germany, 1997.

[6] P. Keleher. Lazy release consistency for distributed shared
memory. January 1995. Ph.D. Thesis, Rice University.

[7] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel.
Treadmarks: Distributed shared memory on standard work-
stations and operating systems. InProceedings of the Winter
94 Usenix Conference, pages 115–131, January 1994.

[8] A.-C. Lai and B. Falsafi. Memory sharing predictor: the key
to a speculative coherent dsm. InProceedings of the 26th
annual international symposium on Computer architecture,
pages 172–183. IEEE Computer Society Press, 1999.

[9] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems.ACM Transactions on Computer Systems,
7(4):321–359, november 1989.

[10] R. Lipton and J. Sandberg. Pram: A scalable shared mem-
ory. Technical Report CS-TR-180-88, Princeton University,
September 1988.

[11] R. Lottiaux and C. Morin. Containers : A sound basis for
a true single system image. InProceeding of the IEEE In-
ternational Symposium on Cluster Computing and the Grid,
May 2001.

[12] L. McVoy and C. Staelin. lmbench sources.
http://www.bitmover.com/lmbench/.

[13] L. McVoy and C. Staelin. lmbench: Portable tools for per-
formance analysis.Usenix, 1996.

[14] S. S. Mukherjee and M. D. Hill. Using prediction to acceler-
ate coherence protocols. InProceedings of the 25th annual
international symposium on Computer architecture, pages
179–190. IEEE Press, 1998.

[15] J. Oplinger and M. Lam. Enhancing software reliability us-
ing speculative threads. InProceedings of the Conference
on Architectural Support for Programming Languages and
Operating Systems, October 2002.


